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ABSTRACr 

In [7] Furstenberg gave a proof of Borel's density theorem [I], which depended 
not on complete reducibility but rather on properties of the action of a 
minimally almost periodic group on projective space. In [9] and [10] the basic 
idea of this proof was extended in various ways to deal with other particular 
classes of Lie groups G and closed subgroups H of cofinite volume. In [5] Dani 
gives a more gerteral form of the density theorem in which H need only be 
non-wandering. In the present paper we define the condition of k-minimal 
quasiboundedness,  and prove that this condition is necessary and sufficient for 
the density theorem to hold ((2.4) and (2.6)). Here we replace the arguments of 
[9] and [10] simply by proofs that the groups considered there satisfy this 
condition (2.10). We extend the results of [t)l and [It)] by considering groups 
which are analytic rather than algebraic, and in the solvable case we completely 
characterize the k-minimally quasibounded groups (2.9). In the last section we 
give two applications of the density theorem. 

§1. Throughout this paper V will denote a finite-dimensional vector space 
over k, where k is either R or C, and II tl will denote a Banaeh algebra norm on 
Endk (V) (i.e., a submultiplicative norm with II I [[ -- 1). If x E GL(V),  x is said to 
be bounded if the cyclic subgroup (x) generated by x is a bounded subgroup of 
GL(V) (equivalently, if the closure of (x) in Endk (V) is compact). We shall need 
a more general notion, and for this purpose we define ~o(x)=l]x[["/Idetx I, 
where n =dim V. Then w is a continuous function on GL(V),  satisfying 
~o(xy)= < w(x)to(y) and w(x)-> 1 for every x,y E G L ( V )  (the latter inequality 
follows from the fact that the spectral radius tr(x) = max{IA [: Z is an eigenvalue 

of x} satisfies o-(x)_<-]lx II). Now we shall say that x is quasibounded if w]¢,> is 
bounded; more generally, if G is a subgroup of GL(V), and w Ic is bounded, we 
shall say that G is quasibounded. 
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(1.1) REMARKS. 

(1) The notion of quasiboundedness is independent of the particular choice of 

norm on Endk(V),  since all such norms are equivalent. 

(2) The notion of quasiboundedness is preserved under extension or restric- 

tion of the field of scalars, in the following sense. If k = R, and Vc denotes the 

complexification of V, then we may choose a Banach algebra norm II I[c on 

Endc(Vc) so that ]lXcllc = IIx II for all x E GL(V )  (here Xc denotes the extension 

of x to Vc). Thus wvc(xc) = , vv(x) .  On the other hand, if k = C, and V R denotes 

the real 2n-dimensional sp~ce obtained by restricting scalars, then IIxRH = [[x Jl 

while det x R -- Idet x 12 (since the eigenvalues of x ~ consist of those of x together 

with their complex conjugates.) Thus wvR(x R) = o r ( x )  2 for all x ~ GL(V),  so 

G C GL(V)  is quasibounded iff G~C G L ( V  ~) is quasibounded. 

(3) If H C G are subgroups of GL(V),  and H has finite index in G, then G is 

quasibounded iff H is quasibounded: this follows from submultiplicativity of to 

and the fact that G = F H  for some finite set F. Obviously it would be sufficient 

for F to be compact; thus the same result holds if H C G are Lie subgroups of 

GL(V)  with H closed in G and G / H  compact (in the 'Lie  topology). 

(4) to(Ax)= w(x) for all x E GL(V),  A E k × 

(1.2) LEMMA. Let  x E GL(V).  Then the following are equivalent:  

(i) x is quasibounded. 

(ii) x is semisimple, and all the eigenvalues of  x have the same modulus.  

(iii) x = toy, [or some bounded y ~ G L ( V )  and some to > 0 ;  in this case 

to = i det Y ]l/,. 

(iv) x " = toy, for some m E N, some bounded y E GL(V),  and some to > O. 

I f  x lies on a one-parameter  group ( e'X ),~R , then these conditions are equivalent  to 

(v) X = a I  + Y, where o~ E R and Y is semisimple with purely imaginary 

eigenvalues. 

PROOF. If k = C, and x ~ is the operator  on V R obtained by restricting scalars, 

then it is easy to see that x is semisimple ill x R is semisimple, and as we have 

noted, the eigenvalues of x ~ consist of those of x together with their conjugates. 

Thus we may assume without loss of generality that k = R. 

(i) ~ (ii): Since to is submultiplicative and bounded on (x) we have 

lY'  o 
 -,im :,am r L, rl,,-- J et I 

Therefore I det x I = ~ (x)" so that [A [ = ~r (x) for all eigenvalues A of x. It follows 

that if we write x as a commuting product x = ehu with e elliptic, h hyperbolic, 
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and u unipotent, then h = (r(x)I = pI is scalar with p > 0. Furthermore, since o) 

is submultiplicative, w is bounded on the set of elements u i = p Je Jx j. Since u is 

unipotent, det u '  = 1, so (u) must be bounded, which is impossible unless u = 1. 

Therefore, x = pe is semisimple. 

(ii) ~ (iii): The unipotent part of x is trivial, so the argument above shows 

that x = pe with h = pi = cr(x)I. 

(iii) ~ (iv): obvious. 

(iv) ~ (i): The hypothesis implies that ~o is bounded on the subgroup (x") ,  

which has finite index in (x). Therefore the conclusion follows from Remark 

(1.1)(3). 

Now suppose that x = e x. Then (v) certainly implies (i). On the other hand, 

since the subgroup (e"X),~z of (e'"),~, is quasibounded, Remark (1.1)(3) again 

implies that (e'X),~a is quasibounded. Thus (i) holds for each t E R, and (v) 

follows easily. • 

REMARK. In [5] Dani has called an element of GL(V) projectively bounded if 

it satisfies condition (iv) above, and has remarked in [6] that (iv) and (iii) are 

equivalent. 

(1.3) LEMMA. Let G be an abelian subgroup of GL(V),  consisting entirely of 

quasibounded elements. Then the group B = {x/]detx [ ~/" : x E G} is bounded. 

Thus there is a compact abelian group C =/3  C GL(V) such that every element 

x E G is of the form x = pc with p > O and c E C. 

PROOF. We may obviously assume that k = C, since otherwise we could 

complexify V. Since by Lemma (1.2) all the elements of G are semisimple, they 

may be simultaneously diagonalized relative to some basis in V. Condition (ii) of 

Lemma (1.2) now shows that relative to this basis, B C U(n)  (3 D(n) .  • 

(1.4) COROLLARY. Let G be a solvable subgroup of GL(V), consisting entirely 

of quasibounded elements. Then G is quasibounded, and contains an abelian 

subgroup of finite index. In particular, if G is connected then it is abelian. 

PROOF. By the Lie-Kolchin theorem [2, p. 243], a subgroup H C G of finite 

index can be put into triangular form over C. Thus every element of (/4, H) is 

unipotent, but also semisimple by Lemma (1.2), so H is abelian. By Lemma 

(1.3), o ( H )  C oJ(C) for a certain compact group C, so H is quasibounded, hence 

also G (Remark (1.1)(3)). • 

(1.5) PROPOSITION. Let G be a real Lie subgroup of GL(V), and suppose G is 

almost connected, that is, Go (the connected component of 1) has finite index in G. 

Then the following are equivalent: 
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(i) G is quasibounded. 

(ii) Every element of G ,is quasibounded. 

(iii) I f  Go = S • R is the Le.vi decomposition of G,, (with S semisimple and R the 

radical), then S is compact, R is central in G,), and R is quasibounded. 

(iv) G contains a closed, quasibounded subgroup A such that A is (isomorphic 

to) a vector group, and G / A is compact. 

PROOF. (i) ~ (ii): Obvious. 

(ii) ~ (iii): Let G,, = S • R be the Levi decomposition. Since S is semisimple, 

det x = 1 for every x ~ S, so condition (ii) of (1.2) implies that every element of S 

is bounded. By semisimplMty, S is closed in GL(V)  and therefore compact. 

Next, by (1.4) R is abelian and quasibounded. If B and C = /~  are the subgroups 

of (1.3), then S normalizes B (since R is normal) and hence C. Since C has a 

discrete automorphism group and S is connected, S centralizes C and therefore 

R. 
(iii) ~ (iv): Since R = H .  A (direct product) with H compact and A a vector 

group, it follows that G() := S H . A  = K . A  with K compact; thus G / A  is 

compact. 
(iv) ~ (i): Remark (1.1)(3). 

(1.6) COROLLARY. An  almost connected, quasibounded real Lie subgroup G of 

GL(V)  acts semisimply on V. 

PROOF. By condition (iii) above, the Lie algebra of G is reductive, so G,, acts 

semisimply. Hence G also acts semisimply, by [11]. • 

(1.7) COROLLARY. Let k = R, and let G be a quasibounded vector group in 

GL(V).  Then there is a basis of V relative to which the matrices of elements of G 

have simultaneous block diagonal form. in which each block is either 1 x I or 

2 x 2. More precisely, if (e'X) is a one-parameter group in G, then there exist 

a, fl~ . . . . .  ft,, ~ R such that the matrix of e'X has the form 

e ~ l t  • • • 

Rm(t 

where each Ri (t) is either a 2 x 2 block of the form 

Rj (t) = (cos flit - sin 13it ~ 
\sin flit cos flit / 

or R i (t) is the unit 1 x 1 block (and j9 i = 0). Thus each quasibounded vector group 

acts as a family of generalized spirals. 
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PROOF. This follows easily from (1.6) and (1.2). • 

We conclude this section with a simple lemma. 

(1.8) LEMMA. Let G be a Lie subgroup of GL(V) all of whose elements are 

quasibounded. Then G is unimodular. 

PROOF. Let g6 be the real Lie algebra of G, regarded as a subalgebra of 

fg l(V). By [8, p. 366] the modular function Ac (g) = [det Ad~ (g)l for all g E G ; 

thus it suffices to prove that IdetAdG((g))l is a bounded subgroup of RL But 

g = pu with p > 0 and u bounded, so (since G is linear) for all M E (g we have 

AdG(g)(M) = gMg 1= uMu-~ = a(u)(M),  where a(u)= Adc, L,v,(u)[(~. 

Thus the group Ad~ ((g)) is a subgroup of the compact group a ((u)). • 

§2. In order to apply the previous results to questions of Zariski density, we 

shall need some definitions. If V is a finite-dimensional vector space over k 

(k = R or C) and G is a subgroup of GL(V), then G ~ denotes the algebraic hull 

of G in Vc (where Vc denotes V if k = C, and Vc denotes the complexification 

of V = Vk if k = R). G # is of course defined over k. If H is a subgroup of G, 

then H is Zariski dense in G if H ~ = G #. If W is another finite-dimensional 

space, then a homomorphism 7r:G---~GL(W) will be called a k-rational 
representation if 7r is the restriction to G of an algebraic k-group morphism 

7 r # : G ~ G L ( W c ) .  We shall need terms for the groups which are at the 

opposite end of the spectrum from the bounded and quasibounded groups 

discussed in §1. We shall say that G is k-minimally almost periodic if it has 

essentially no rational bounded representations, and k-minimally quasibounded 
if it has essentially no rational quasibounded representations. More precisely, we 

make the following definitions. 

(2.1) DEFINITION. A group G C GL(V) is k-minimally almost periodic if 

whenever 7r is a k-rational representation of G for which 7r(G) is bounded, 

then 7r(G) = {I}. G is k-minimally quasibounded if whenever 7r is a k-rational 

representation of G for which 7r(G) is quasibounded, then 7r(G)C kL 

Our main results of this section (2.2, 2.6) are that the (generalized) Borel 

density theorem holds for k-minimally quasibounded groups, and that among 

the almost connected groups (for example, the groups Gr~ of real points of an 

R-algebraic group) the density theorem holds only for the k-minimally 

quasibounded groups. We shall see later (2.9, 2.10, 2.11) some examples of these 

groups, and state what we know about the relationship between the two notions 
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of minimal quasiboundedness and minimal almost periodicity (2.5). For now we 

need two preliminary lemmas. 

(2.2) LEMMA. Let G C GL(V).  If G is k-minimally quasibounded then G is 

k-minimally almost periodic. 

PROOF. Let ~ : G ~ G I _ , ( W )  be a k-rational representation with ~r(G) 

bounded, and let o- : G ~ GL(Wc • C) be defined by o-(g) = ~-(g) • 1. Then o- 

is a k-rational morphism with ~r(G) quasibounded (in fact, bounded), so o-(G) 

consists of scalars. Therefore I t ( G ) =  {I}. 

(2.3) LEMMA. Let G C GL(V).  

(i) G # is connected iff all .subgroups of finite index in G are Zariski dense in G. 
(ii) If G is k-minimally almost periodic then G ~ is connected. 

PROOF. 

(i) Suppose G ~ is connected and H C G has index n, so G = Ui'_, x~H. Then 

G #= U7 ~x~H ~, so ( G ~ : H ~ ) _  -< n. Since G ~ is connected, H # =  G ~'. Con- 

versely, suppose all subgroups of finite index in G are Zariski dense in G. If G[ 

denotes the identity component  of G #, then 

Go) (GG[:  =(G ~: ( G : G  n ' "  : < G[)<oo. 

Then by hypothesis the hull ,of G N G[ is G #, so G[ is also Zariski dense in G # 

Hence G[ = G ~. 
(ii) Since G # and Gg ~ are defined over k, there is a k-rational morphism 

z : G # ~ GL(Ec)  such that ker z = G[; thus z(G #) is finite and a fortiori z(G) is 

finite. Therefore,  7(G) = {I}, so G C G[, and G # = G [  is connected. • 

We remark parenthetically that one can see easily from the Lemma (or 

otherwise) that G ~ is connected iff G satisfies the following conditions: 

whenever ~v is a k-rational representation of G for which zr(G) is finite, then 

zr(G) = {I}. Looked at from this perspective, the notions of k-minimal almost 

periodicity and k-minimal quasiboundedness turn out to be strong connected- 

ness conditions on G. 

(2.4) THEOREM. Let G be a k-minimally quasibounded Lie subgroup of 

GL(V),  and let H be a closed subgroup of G such that G / H  carries a finite 

invariant measure. 
(i) If  zr : G--~ GL(W)  is a k-rational representation, then each H-invariant 

subspace U of W is G-invariant. 
(ii) H is Zariski dense in G. 
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PROOF. Every r-dimensional subspace of W is a point of the Grassman space 

~r(W),  and the map cgr(W)~ P(ArW) is G-equivariant and injective. Replac- 

ing W by ArW and ~- by the k-rational representation Arrr, we see that it suffices 

to prove the result when U = L is one-dimensional. Furthermore, since G is 

k-minimally quasibounded, it will suffice to prove that there is a G-invariant 

subspace WI D L such that 7r(G)]w, is quasibounded: for in this case ~r(G) will 

act by scalars on W,, hence also on L (cf. [5, Theorem 2.1] as well as the original 

arguments in [71 and [9]). 
If p = /2  E P(W), where x m ~ denotes the map W ~  P(W), then ([9, Lemma 

1.1]), there is a minimal quasilinear variety X =  W, U . . .  U W, in P(W) 

containing the orbit 6 = T r ( G ) p  (W~ is a subspace of W for i = 1  . . . .  ,n) .  

Assuming, as we may, that L C W~ and no W~ is redundant, it follows (cf. [9, 

Lemma 1.3]) that G permutes the spaces IV, transitively, and that Gz = 

{g ~ G : 7r(g)W, = W1} is a subgroup of index n in G. But since G ~ is connected 

by (2.2) and (2.3), it follows from (2.3) that G, is Zariski dense in G, so G leaves 

W~ invariant; hence G = G~, and X = W~ is the smallest quasilinear variety in 

P(W) containing 6. Now for g E G, let 7n(g) = 7r(g)]w,. If Try(G) is not 

quasibounded, then by [7, Lemma 2] or [9, Lemma 1.4] there is a sequence (~rk) 

in re(G)  such that the projective transformations & on P(W~) converge 

pointwise to a mapq~:P(W,)~P(W~), and Y=q~(P(W1)) is a proper 

quasilinear variety in X = P (W d. Now by [7, Lemma 3] or [9, Lemma 1.5], any 

finite G-invariant measure on X is supported in Y. But since G/H carries a 

finite invariant measure ix, the image of ix under the map G/H---~ G can be 

regarded as a G-invariant measure on P(W~) whose support contains ft. 

Therefore 6 C Y ~ X ,  contradicting minimality of X. Thus ~'(G)lw , is 

quasibounded, which completes the proof of (i). 

(ii) There is a k-space We and a line LcC Wc defined over k, and a 

k-morphism 7re: G~--~GL(Wc) for which H ~ = {g E G~: 7r~(g)Lc = Lc} [2, 

Theorem 5.1]. Then ~r = 7r ~ la is a k-rational representation of G on W = Wk, 

and the line L = Lk is 7r(H)-stable. By (i), L is ~-(G)-stable, so G C H ~. • 

For ease of comparison of the present Borel density theorem (2.2) with earlier 

versions in [7], [9], and [10], we have chosen to maintain the hypothesis used 

there, that G/H have finite volume. The proof of (2.2.i) in conjunction with 

Dani's [5, Theorem 2.1] shows, however, that the theorem would still be true if 

H were only assumed to be a non-wandering subgroup of G. 

Before stating our converse to (2.4), we need the following extension of 

Lemma (2.2). 
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(2.5) PROPOSITION. Let G be a subgroup of GL(V). If  G is k-minimally 
quasibounded, then G is k-minimally almost periodic. The converse holds if G is 
solvable, or if G is an almost connected k-Lie subgroup of GL(V). 

PROOF. The first part has been proved in (2.2). To prove the converse, let 

7 r : G ~ G L ( W )  be a k-rational representation for which M = T r ( G )  is 

quasibounded, We must show that M C kI, and to do this, we claim, it is 

sufficient to prove that M is', abelian. For in this case, the map m ~ ~ ( m ) =  

md/det(m) (where d = dim W) is a k-rational representation mapping M into a 

compact group (1.3). Thus q~(M) = (q~ o ~-)(G) must be trivial, by hypothesis, so 

m ~ E kI for all m E M .  It follows that x n E C I  for all x E M  '~. But M ~ is 

connected (by the remark before the Proposition) since M is also k-minimally 

almost periodic; thus M ~ is a complex analytic abelian group, and its exponen- 

tial mapping is surjective. Hence every element of M ~ is a d-th power, so 

M C M ~ C C L  

Now, if G is solvable, then M = ~-(G) is solvable and quasibounded, so by 

(1.4) M contains an abelian subgroup A of finite index. Since M is also 

k-minimally almost periodic, M ~ is connected by (2.3), so again by (2.3) A is 

Zariski dense in M. Thus M is abelian. On the other hand, if G is an almost 

connected k-Lie subgroup of GL(V), then we can identify the Lie algebra of M 

with a subalgebra of 6~I(W). Then AdM is a k-rational representation of M on a 

subspace of 6~I(W), hence AdM o rr is a k-rational representation of G. But by 

(1.5.iii) applied to M, AdM (M) = (AdM o 7r)(G) is compact and therefore trivial, 

by hypothesis. Thus M0 is abelian. Again, by (2.3) and the hypothesis G '~ is 

connected and Go is Zariski dense in G. Thus 7r(Go)C M0 is Zariski dense in 

zr(G) = M, so M is abelian. • 

Next, we turn to the (partial) converse of Theorem (2.4). 

(2.6) THEOREM. Let G be an almost connected k-Lie subgroup of GL(V). 

Suppose that for each closed '~ubgroup H of G, if G /H  carries a finite invariant 
measure then H is Zariski dense in G. Then G is k-minimally quasibounded. 

PROOF. By (2.5) it suffices, to prove that if 7r : G ~ GL(W) is a k-rational 

representation for which 7r(G) is a bounded group, then 7r(G) = {I}. We deal 

separately with the real and complex cases. If k = C, then zr is an analytic 

homomorphism of the complex analytic group Go into a bounded group, hence 

7r(Go) is trivial (see [9, p. 16] for example). Since G/Go is finite, the hypothesis 

implies that Go is Zariski dense in G, so 7r(G) is also trivial. 

To deal with the real case, we observe first that if S is a closed subgroup of 
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~-(G) for which the homogeneous space zr(G)/S is compact, then S is Zariski 

dense in 7r(G). For by Lemma (1.8) both zr(G) and S are unimodular, so 
zr(G)/S and therefore also G/zr ~(S) both carry finite invariant measures. Thus 

7r I(S) is Zariski dense in G by hypothesis, so S is Zariski dense in zr(G). Now 

by Proposition (1.5), zr(G) contains a vector subgroup A with zr(G)/A 
compact, so A is dense in 7r(G). Thus it suffices to prove that A = {I}. Since A 

is a bounded vector group, it may be put simultaneously into the block diagonal 

form of (1.7), with each a = 0 (since the eigenvalues must have modulus 1). If A 

is not trivial, then A acts like SO(2) on the two-dimensional subspace Wi 

corresponding to some non-trivial 2 × 2 block Ri ; hence all orbits A • v in W~ 

are compact. If S~ is the stabilizer of v in A, then S~. is cocompact in A and in 

7r(G). It follows that So is Zariski dense in ~-(G), so zr(G) fixes each W~ 

pointwise. This contradiction shows that no such 2 x 2 blocks exist, and that A is 

diagonalizable over R. But A is connected and U(n)TI D(n,R)  is discrete, so 
A ={1}. 

(2.7) REMARKS. 

(1) The result in (2.6) fails for discrete groups; in fact neither k-minimal 

quasiboundedness nor k-minimal almost periodicity is necessary for the density 

theorem when G is discrete. For example, if p is a prime and G = {R(n/pk): 
n, k E Z ,  k _-> 1} is the group of rotations in R 2 by angles 2zrn/p k, then G is an 

abelian group with no proper subgroups of finite index, so the density theorem 
holds vacuously; but G is a bounded group. 

(2) There are analytic linear groups G for which some but not all of the closed 

proper subgroups satisfy the condition of the density theorem. For example, if G 
is the one-parameter group (e"),~R where 

(ct - a f t )E  (~6l(2, R) with f l~  0, X =  /3 

then every closed subgroup H is of the form (e""X),~z for some 0 E R. Thus 

G/H is compact for all H. On the other hand H is Zariski dense in G ifi Ofl/27r 
is irrational. Of course, this group G is not k-minimally quasibounded; quite the 

contrary, by (1.2) G is quasibounded (and not scalar). 

The fact that the group G of (2) above is not k-minimally quasibounded goes 

hand in hand with the fact that the eigenvalues of elements of G are not real 

(even though, when c~ ~ 0, the eigenvalues will lie off the unit circle, that is, G 

has a type E action). In fact, from (2.9) below it follows that among groups G for 

which G ~ is connected (for example, when G is connected), G is k-minimally 

quasibounded iff G acts by real eigenvalues. 
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(2.8) LEMMA. Let k = R, and suppose G C GL(V) is triangularizable over C. 

I f  each element of G has only real eigenvalues, then G is triangularizable over R.. 

PROOF. If w is a simultaneous eigenvector for G in Vc, then ff is also (where 

ff is the complex conjugate of w relative to the canonical conjugation in Vc). 

Thus Re w = (w + if)/2, Im w = (w - ~)/2i  both generate G-stable subspaces 

in V, and since not both can be 0, G has a simultaneous eigenvector v in V. Now 

the proof can be completed by induction on dim V, since the hypothesis is 

inherited by the image of G acting on V/Rv.  • 

(2.9) PRoeosmoN. Let k = R, and let G C GL(V) be solvable. Then G is 

k-minimally quasibounded iff G ~ is connected and G acts by real eigenvalues on 

V. 

PROOF. ( ~ ) :  Suppose ~- : G ~ GL(W) is an R-rational representation with 

M = 7r(G) bounded; by (2.5) it suffices to show that M = {I}. First, by (1.4) M 

contains an abelian subgroup of finite index; since M s =  7r(G) ~=  7r(G #) is 

connected, it follows from (2.3) that M is abelian. Next we observe that M acts 

by real eigenvalues. For by the Lie-Kolchin theorem G # is triangularizable over 

C, so by (2.8) G is triangularizable over R. Thus by continuity G ~ is 

triangularizable over R, that is, leaves stable an R-rational flag in Vc. By [2, 

(15.4) or (15.5)], M ~ = 7r(G #) is also triangularizable over R, hence M acts by 

real eigenvalues. Since M is bounded and commutative, with real eigenvalues, it 

follows that M is in fact diagonalizable over R; thus M is isomorphic to a 

bounded subgroup of (R×) ~, so M is finite. Now using (2.3) again we deduce that 

M = {I}. 
( ~ ) :  We have already observed (2.2 and 2.3) that G ~ is connected. Thus by 

the Lie-Kolchin theorem, G # is triangularizable over C, so the eigenvalues of 

G ~ (and of G, of course) consist of the numbers x(g),  with X a C-rational 

character of G ~, and g E G ~. If X is such a character and ~ = 2( [~, then Re 

and Im q~ are R-rational functions on G, and 

(Reap(g) -Imq~(g)~ 
7r" g ~ \Ira q,(g) Re ~(g)  } 

is an R-rational representation of G into GL(2, R) with the 7r(G) quasibounded: 

for ~- is the restriction of the (necessarily) homomorphic map on G ~, 

- 

g o- (g)  j '  

where cr and z are R-rational extensions to G ~ of Re ~;, Im q~, respectively. By 

hypothesis w(G) consists of scalars, so X [~ is real-valued. • 
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(2.10) PROPOSITION. Let G be a k-Lie subgroup of GL(V). Then G is 

k-minimally quasibounded in each of the following cases: 

(i) G is minimally almost periodic; 
(ii) k = C, and G is complex analytic; 
(iii) k = R, G is real analytic, R = rad(G) acts by real eigenvalues, and G/R 

has no compact factors. 

PROOF. Let ~r : G ~ G L ( W )  denote a k-rational representation of G such 

that 7r(G) is quasibounded. If G is m.a.p., then deto 7r : G - ~ C  × must be trivial, 

so 7r(G) is actually bounded (ll~r(x)tt = to(Tr(x))~/"); but then ~r itself must be 

trivial. This takes care of case (i). For cases (ii) and (iii) we may assume by (2.5) 

that ~r(G) is bounded, and prove that ¢r is trivial. Case (ii) has already been dealt 

with in the proof of (2.6). For case (iii), R - - r a d ( G )  is R-minimally almost 

periodic by (2.9) and (2.5), so 7r(R)={I},  and 7r induces a continuous 

homomorphism of the m.a.p, group G/R --~ rr(G). By case (1) 7r(G) is trivial. • 

(2.11) REMARK. It may be worth pointing out that if G = GR is an analytic 

group which is the group of real points of a solvable algebraic group, and if 

further no element of G has eigenvalues A of modulus 1 except possibly A = 1 

itself (that is, if G has a type E action), then G is R-minimally quasibounded. 

For in this case G cannot have any compact subgroups hence is simply 

connected, so G must act by real eigenvalues [9, (3.2)]. 

§3. In this section we give two applications of the Borel Density Theorem. 

Our first result concerns the Chabauty condition for lattices in a Lie group. If G 

is a separable, locally compact group, then the set of closed subgroups of G can 

be given a compact metrizable topology (the Chabauty topology) as follows: say 

that a sequence (H,)  of closed subgroups of G converges to the closed subgroup 

H if for each compact set K C G and each neighborhood U of 1 in G, both the 

inclusions Hn n K C H V  and H n K C/4.  V hold for all sufficiently large n. This 
topology is described in more detail in [4], [3], [15]. In [4] Chabauty proved that 

when this topology is considered on the set of lattices in R n, it coincides on the 

GL(n,R)-orbit of each lattice with the quotient topology from GL(n,R). In a 

series of papers [13], [14], [15], Wang has discussed other contexts to which one 

can (or cannot) generalize Chabauty's result. Here we prove an extension of 

Wang's result, proved in [13], that Chabauty's condition holds for simply 

connected nilpotent Lie groups. 

(3.1) THEOREM. Let G be a solvable analytic subgroup of GL(n,R) with only 
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real eigenvalues, and let F be a lattice in G. Let Aut(G) denote the group of 
bicontinuous automorphisms of G, and let 3/" denote the stabilizer of F in Aut(G). 

Then the Chabauty condition holds for F: the canonical biiection 
Aut(G)/N--~ Aut(G). F is a homeomorphism (with the natural quotient topology 
on the former, and the Chabauty topology on the latter). In particular the orbits 
Aut(G).  F are locally compact in the Chabauty topology. 

PROOF. By results of Weil [16] (see [13, Theorem 9.4]) it suffices to prove that 

the cohomology restriction map H~(G, ill)--* H 1 (F, 6]) is an isomorphism, where 

G acts on its Lie algebra (g by Ad. The proof now follows from Proposition (3.2) 

below. • 

(3.2) PROPOSITION. Let G be a solvable analytic subgroup of GL(n,R) with 

only real eigenvalues, and let H be a closed uniform subgroup of G (equivalently, a 
closed subgroup for which G / H  carries a finite invariant volume). Let 
p : G--~ GL(W) be an R-rational representation. Then the cohomology restriction 
maps HP(G, W)---~ HP(H, W) are isomorphisms for all p >-_ O. 

PROOF. Since G is simply connected [9], the result will follow from Mostow's 

[12, Theorem 8.1] if we can show that H is p-ample in G, that is, that 

(p @ AdG)(H) is Zariski dense in (p @ Ad~)(G).  But H is Zariski dense in G 

by (2.9) and the density theorem (2.4). • 

Our final result (3.5) is an application of the Borel density theorem to simple 

groups. It explains why in non-compact simple groups the only examples of 
subgroups with cofinite volume are lattices. It also generalizes the classical fact 

that the automorphism group of a compact Riemann surface of genus g > 1 is 
finite. The result will be deduced from (2.4), although it can in fact be deduced 

from Borel's original theorem [1]. 

(3.3) PROPOSITION. Let G be a k-minimally quasibounded Lie subgroup of 

GL(V), and let H be a closed subgroup of G such that G / H  carries a finite 
invariant measure. Then any analytic subgroup L of G which is normalized by H 

is normal in G. 

PROOF. L is normalized by H iff 2e, the Lie algebra of L, is Ado (H)-stable. 

Thus the lemma follows from (2.4). 

As a generalization to non-linear groups; we have 

(3.4) PROPOSITION. Let G be a k-Lie group, and H a closed subgroup of G 
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such that G / H  carries a finite invariant measure. If A d o  ( G )  is k-minimally 

quasibounded (in GL((~6)) then any analytic subgroup L of G which is normalized 

by H is normal in G. In particular, this holds in all of the following cases : 

(i) G is minimally almost periodic; 

(ii) G is complex anlytic ; 

(iii) G is real analytic with radical R, G / R  has no compact factors, and 

Ad~ (R ) acts on (~ with real eigenvalues. 

PROOF. L is normal ized  by H itt ~ is stable under  A d ( H )  iff 5¢ is stable 

under  A d ( H )  , the Eucl idean closure in GL(6~). Since A d ( G ) / A d ( H )  has finite 

volume,  the first s t a t emen t  follows f rom (2.4). The  second s t a t ement  now follows 

f rom (2.10). • 

(3.5) COROLLARY. Let G be a non-compact simple analytic group, and let H 

be a closed subgroup of G such that G ~  H and G / H  carries a finite invariant 

measure. Then N~ (H), the normalizer of H in G, is discrete. In particular, H is 

discrete and No, ( H ) / H  is finite. 

PROOF. It will suffice to prove  that  N = N~ ( H )  is discrete,  since N / H  has 

finite volume,  and there fore  is compac t  (as H is normal  in N) .  Now No is normal  

in N, and in par t icular  is normal ized  by H,  so by (3.4) No is actually normal  in G. 

Since G is simple,  e i ther  No C Z ( G ) ,  the (discrete) center  of G, or No = G. In the 

fo rmer  case N,, is discrete,  hence so is N. The  lat ter  case, on the o ther  hand,  is 

impossible .  For  No = G implies that  N = G ;  thus H is normal  in G and G / H  is 

a compac t  group.  Moreove r ,  /4o is no rmal  in G, so the hypothesis  H ~  G and 

simplicity imply that  Ho C Z(G) .  But t h e n / 4 o  and therefore  H are discrete,  so 

the compac t  g roup  G / H  is locally i somorphic  to G, contradict ion.  • 
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